From 1 - 10 / 23
  • Categories  

    L'atlas cartographique offre un aperçu des données produites et traitées dans le cadre du projet Artisols. Ce dernier, soutenu par la Région Occitanie et le Fonds Européen de Développement Régional (FEDER), s’inscrit dans une démarche d’évaluation et de qualification du processus d’artificialisation des sols en région Occitanie.Neuf grandes thématiques y sont développées : - Les bâtiments résidentiels et d’activité- L’occupation du sol - La densité de bâti par maille de 150 m de côté - L'évolution de la densité de bâti entre 2017 et 2019- Les taches urbaines - La densité de bâti au sein des taches urbaines- Le coefficient de dispersion- L'indice de fragmentation des espaces non artificialisés- L'indice de compacité des taches urbaines

  • Categories  

    Les taches urbaines distribuées sont caractérisées par des formes très variées. Ces formes peuvent aller d’un aspect très compacte (proche d’un disque, forme de compacité maximale sur un plan) à celui de formes très digitées ou de filaments, s’approchant de lignes plus ou moins sinueuses. Le suivi de cette dimension de compacité morphologique permet d’estimer si l’artificialisation due aux taches urbaines suit des extensions homogènes ou des extensions hétérogènes. Cet indice est calculé à l'échelle des EPCI d'Occitanie et pour l'année 2019.

  • Categories  

    The evolution of infrastructure networks such as roads and streets are of utmost importance to understand the evolution of urban systems. However, datasets describing these spatial objects are rare and sparse. The database presented here represents the road network at the french national level described in the historical map of Cassini in the 18th century. The digitalization of this historical map is based on a collaborative platform methodology that we describe in detail. These data can be used for a variety of interdisciplinary studies, covering multiple spatial resolutions and ranging from history, geography, urban economics to the science of network. (2015-01-15)

  • Categories  

    Hyperspectral ENVI standard simulated images. Spatial and spectral configurations generated correspond to ESA SENTINEL-2 instrument that was lunched on 2015, and HYPXIM sensor which was under study at that time.

  • Categories  

    Hyperspectral data were obtained during an acquisition campaign led on Toulouse (France) urban area on July 2015 using Hyspex instrument which provides 408 spectral bands spread over 0.4 – 2.5 μ. Flight altitude lead to 2 m spatial resolution images. Supervised SVN classification results for 600 urban trees according to a 3 level nomenclature: leaf type (5 classes), family (12 and 19 classes) and species (14 and 27 classes). The number of classes differ for the two latter as they depend on the minimum number of individuals considered (4 and 10 individuals per class respectively). Trees positions have been acquired using differential GPS and are given with centimetric to decimetric precision. A randomly selected subset of these trees has been used to train machine SVM and Random Forest classification algorithms. Those algorithms were applied to hyperspectral images using a number of classes for family (12 and 19 classes) and species (14 and 27 classes) levels defined according to the minimum number of individuals considered during training/validation process (4 and 10 individuals per class, respectively). Global classification precision for several training subsets is given by Brabant et al, 2019 (https://www.mdpi.com/470202) in terms of averaged overall accuracy (AOA) and averaged kappa index of agreement (AKIA).

  • Categories  

    Cette donnée raster résulte d'une classification par méthode d'apprentissage profond à partir d'imagerie très haute résolution spatiale (1.5m) SPOT 6/7. Des post-traitements ont été effectués afin de mieux caractériser les classes relatives à l'artificialisation.

  • Categories  

    Full hyperspectral VNIR-SWIR ENVI standard image obtained from the coregistration of both VNIR and SWIR ones through a signal aggregation process that allowed to obtain a synthetic VNIR 1.6 m spatial resolution image, with pixels exactly corresponding to natif SWIR image ones. First, a spatially resampled 1.6 m VNIR image was built, where output pixel values were calculated as the average of the VNIR 0.8 m pixel values that spatially contribute to it. Then, ground control points (GCP) were selected over both images and SWIR one was tied to the VNIR 1.6 m image using a bilinear resampling method using ENVI tool. This lead to a 1.6 m spatial resolution full VNIR-SWIR image.

  • Categories  

    Les données de nodata par année (entre 2015 et 2019) correspondent aux zones de nuages et de leurs ombres portées sur les images satellites SPOT 6/7 utilisées pour la classification d'occupation du sol, donnée source pour les analyses géographiques qui ont suivi (extraction des espaces bâtis, des taches urbaines, indicateurs spatialisés)

  • Categories  

    La zone d'étude se situe au nord ouest du Sénégal et s'étale sur 5 100km². Elle inclue la ville de Thiès et une partie de la ville de Dakar, et remonte jusqu'à Kébémer, aux portes du désert de Loumpoul. La carte d'occupation 2018 a été réalisée à partir d'une image à Très Haute Résolution Spatiale (THRS) à 1.5m Spot6 acquise le 15/10/2010 et une série temporelle d'images Sentinel2 (résolution 10m) acquises entre le 01/01/2018 et le 31/12/2018. Le traitement a été réalisé via la chaine de traitement Moringa développée dans l'UMR TETIS. La méthodologie s'appuie sur une Segmentation Orientée Objet de l'image THRS puis d'une classification de chaque polygone (algorithme Random Forest) s'appuyant sur l'image SPOT6, la série temporelle Sentinel2, le SRTM à 30m et de nombreux indices calculés à partir de ces images (NDVI, indices de texture, pente,...). L’algorithme a été entrainé via un jeu de données acquises sur le terrain complété de données obtenues par photo-interprétation. Des corrections manuelles par photo-interprétation ont été réalisées afin d'améliorer le résultat. La précision globale est de 93%. La classification contient 13 classes d'occupation du sol : culture irriguée hors bas-fond, culture irriguée de bas-fond, culture pluviale, plantation, dune sable - arbustes, eau, savane arbustive, savane herbacée, sol nu, sol inondable, sol faiblement végétalisé, végétation naturelle dense et zone urbaine.

  • Categories  

    Le territoire régional est composé de taches urbaines de différentes tailles et formes, distribuées de manière variée. Les espaces urbains sont reliés les uns aux autres par le réseau routier, en particulier le réseau composé des routes primaires et secondaires. Cet espace urbain et routier ainsi composé est fortement artificialisé avec une forte composante d’imperméabilisation qui perdure au fil du temps. La dynamique spatiale et temporelle de cet espace peut être évaluée par les surfaces qui deviennent artificialisées, par la consommation des surfaces interstitielles, généralement agricoles ou naturelles. Ces surfaces à faible imperméabilisation, moins artificialisées, sont ainsi des îlots séparés les uns des autres par la trame urbaine et routière. Ces ilots sont de tailles variées et composent une structure fragmentée.Cet indice prend la forme d'une taille effective de maille, à savoir une grandeur qui exprime « la probabilité que deux points choisis au hasard dans un territoire [...] ne soient pas séparés par des obstacles tels que les voies de communication ou des zones bâties » (J. Jaeger, 2007).